
232
IEICE TRANS. ELECTRON., VOL.E105–C, NO.6 JUNE 2022

PAPER Special Section on Low-Power and High-Speed Chips

A Metadata Prefetching Mechanism for Hybrid Memory
Architectures

Shunsuke TSUKADA†a), Hikaru TAKAYASHIKI†, Nonmembers, Masayuki SATO†b), Member,
Kazuhiko KOMATSU†, Nonmember, and Hiroaki KOBAYASHI†, Member

SUMMARY A hybrid memory architecture (HMA) that consists of
some distinct memory devices is expected to achieve a good balance be-
tween high performance and large capacity. Unlike conventional memory
architectures, the HMA needs the metadata for data management since the
data are migrated between the memory devices during the execution of an
application. The memory controller caches the metadata to avoid accessing
the memory devices for the metadata reference. However, as the amount
of the metadata increases in proportion to the size of the HMA, the mem-
ory controller needs to handle a large amount of metadata. As a result, the
memory controller cannot cache all the metadata and increases the number
of metadata references. This results in an increase in the access latency
to reach the target data and degrades the performance. To solve this prob-
lem, this paper proposes a metadata prefetching mechanism for HMAs.
The proposed mechanism loads the metadata needed in the near future by
prefetching. Moreover, to increase the effect of the metadata prefetching,
the proposed mechanism predicts the metadata used in the near future based
on an address difference that is the difference between two consecutive ac-
cess addresses. The evaluation results show that the proposed metadata
prefetching mechanism can improve the instructions per cycle by up to
44% and 9% on average.
key words: hybrid memory architecture, metadata, prefetch, address dif-
ference, performance

1. Introduction

Recent computers are equipped with a large number of cores
due to requests for significant amount of computing re-
source. Such computers execute applications that handle
large amounts of data, e.g., extensive data analysis and ma-
chine learning, which requires a larger memory capacity.
One of the promising memory technologies for large ca-
pacity is Phase Change Memory (PCM). PCM memorizes
data by using the difference in resistance value caused by
the phase change of chalcogenide glass [1]. Since the resis-
tance value changes in different medium conditions, PCM
allows a large amount of data to be stored in a single mem-
ory cell. Thus, PCM is expected to achieve a larger memory
capacity than DRAM. However, since PCM uses physical
change for write operations, the latencies for the operations
are much higher than those of DRAM. Therefore, it is chal-
lenging to use PCM alone and realizes the high-speed and
large-capacity memory system.

Manuscript received June 30, 2021.
Manuscript revised October 20, 2021.
Manuscript publicized December 3, 2021.
†The authors are with Tohoku University, Sendai-shi, 980–

8579 Japan.
a) E-mail: shunsuke.tsukada.p1@dc.tohoku.ac.jp
b) E-mail: masa@tohoku.ac.jp

DOI: 10.1587/transele.2021LHP0004

To realize both high speed and large capacity, hy-
brid memory architectures (HMAs) have been proposed [2]–
[5]. The HMA consists of the high-performance memory
called the near memory (NM) and the large-capacity mem-
ory called far memory (FM). By allocating the data between
the NM and the FM according to the data access pattern,
the HMA can take advantage of the fast data access of the
NM and the large capacity of the FM. Currently, real hard-
ware systems including HMAs become available, e.g., Intel
Knights Landing processor [6] and systems including Intel
Optane DC Persistent Memory [7].

From a data management perspective, three approaches
have been proposed to effectively use the NM and the FM.
The first one uses the NM as cache [8]–[19]. The second
one uses the NM and the FM as a flat address-space mem-
ory [3]–[5], [20]–[27]. The third one is the hybrid approach
that uses a part of the NM and the FM as a flat address-space
and the rest of the NM as a cache [28]. When the NM and
the FM used as a flat address-space, the HMA needs an in-
formation to manage data between the NM and the FM. This
information is called metadata. The metadata has the infor-
mation of the data location. To access the data correctly,
the memory controller always has to refer to the metadata
before accessing the data.

Since the memory controller is on a chip, there is in-
sufficient space to store all of the metadata in the memory
controller. The state-of-the-art HMA stores the metadata in
the NM [28]. In this case, when a data request comes, the
memory controller has to access the NM to refer to the meta-
data. It causes a long access latency to access the target data
and results in the performance degradation. To avoid the
performance degradation, the HMA has the small memory
array to cache the metadata in the memory controller, called
metadata memory array (MMA). However, as the total ca-
pacity of the HMA increases, the amount of the metadata
also increases so that the MMA cannot hold all the meta-
data. Therefore, it becomes difficult to hide the long access
latency to the target data in the MMA.

To solve this problem, this paper proposes a metadata
prefetching mechanism for HMAs. The metadata prefetch-
ing can reduce the metadata access latency by improving
the hit rate of MMA. This paper first conducts a preliminary
experiment to discuss a strategy to determine the metadata
to be prefetched. Based on the experimental results, this
paper proposes that the prefetching mechanism should con-
sider the prefetching based on the address difference that

Copyright c⃝ 2022 The Institute of Electronics, Information and Communication Engineers



TSUKADA et al.: A METADATA PREFETCHING MECHANISM FOR HYBRID MEMORY ARCHITECTURES
233

is a regularity of the difference between two successive ac-
cesses. This paper implements and evaluates the proposed
metadata prefetching mechanism based on the address dif-
ference and confirms the performance improvement.

The contributions of this paper are the following two
points.

1. This paper shows the address difference is effective for
the metadata prefetching in a preliminary experiment.

2. This paper proposes a metadata prefetching mechanism
by using the knowledge of the preliminary experiment
and verifies its performance improvement for the HMA
through evaluations.

The remaining of this paper is organized as follows.
Section 2 shows the metadata problem for the HMA. Sec-
tion 3 presents related work. Section 4 preliminarily evalu-
ates the memory access behavior of examined benchmarks
and analyzes their address differences. Section 5 proposes a
metadata prefetching mechanism based on the address dif-
ferences. Section 6 evaluates the performance of the pro-
posed mechanism. Finally, Sect. 7 summarizes this paper.

2. Metadata Problem in an HMA

In contrast to conventional memory systems, an HMA con-
sists of two memories with entirely different performances
and capacities. To take advantage of the high performance
of the NM and the large capacity of the FM, the memory
controller has to move data between the NM and the FM
according to data access behavior. In the HMA, the data
is moved and managed at sector granularity. The sector is
a data management unit for the HMA. Some previous re-
searches record the number of accesses to each sector, and
take a strategy to place the sectors with the highest num-
ber of accesses in the NM and the sectors with the lowest
number of accesses in the FM [3], [13].

To access the same sector even after migrating it the
memory controller should have a mapping information that
is called metadata. At least, the metadata has to contain two
addresses. The first address is the original physical address
before the migration. The processors issue their requests
based on this address. The second address is the current
physical address, which may be different from the original
address because the HMA can migrate the data. Since it is
necessary to hold two addresses for the entire capacity of the
HMA, the number of metadata tends to become significant.
Therefore, it is not easy to store such a large amount of meta-
data on a processor chip. Thus, the HMA has to store all of
the metadata in the NM. The memory controller always ac-
cesses the metadata before accessing the data. Therefore,
the latency for accessing the data is longer than that of using
a conventional memory. To avoid accessing the NM for the
metadata lookup, the HMA caches some metadata in an on-
chip memory controller. A memory that caches the metadata
temporarily is called the Metadata Memory Array (MMA).

The HMA faces two problems regarding metadata ref-
erence latency and the amount of the metadata. Figure

Fig. 1 MMA hit & MMA miss.

Fig. 2 MMA hit latency & MMA miss latency.

1 shows paths to access data in the HMA. Depending on
whether caching the metadata in the MMA or not, there
are two access paths to the data. The first path is the blue
line in Fig. 1 showing the case that the metadata exists in
the MMA when the memory controller checks the meta-
data, which treats an MMA hit. The second path is the
red line in Fig. 1 showing the case that the metadata does
not exist in the MMA when the memory controller checks
the metadata, which treats an MMA miss. When an MMA
miss occurs, the memory controller has to access the meta-
data in the NM. After referring to the metadata, the mem-
ory controller finally accesses the data. The MMA miss
causes a long latency compared with the case with the MMA
hit. For example, we assume that the MMA access la-
tency is several nanoseconds, the NM access latency is about
100 nanoseconds, and the FM latency is about three times
that of the NM. Figure 2 shows the latency at the time of
the MMA hit and at the time of the MMA miss when data is
stored in the NM or the FM. From Fig. 2, the latency of the
MMA miss is longer than that of the MMA hit, regardless
of whether the data is stored in the NM or the FM. Thus,
the longer latency caused by the MMA miss is a penalty for
accessing the data.

In addition to the metadata access latency, the HMA
has the other problem of increasing metadata. The HMA
needs to increase the capacity of the NM and the FM as a
result of the development of applications that handle large
data, such as big-data analysis, machine learning, and high-
performance computing. Additionally, the amount of the
metadata increases in proportion to the capacity of an HMA.
Since the memory controller cannot store all of the meta-
data on a chip, the increase in the metadata will increase
the MMA capacity miss during the execution. Therefore, it
is essential to reduce the number of the MMA misses effi-



234
IEICE TRANS. ELECTRON., VOL.E105–C, NO.6 JUNE 2022

ciently even when the amount of metadata on the MMA is
limited.

This paper aims at reducing the number of accesses to
the NM for the metadata reference. In addition, it is also
necessary to have a mechanism to reduce the latency even
when the capacity of the MMA is much smaller than the
total amount of the metadata in the NM.

3. Related Work

The conventional HMAs are mainly categorized into three
approaches. The first HMA uses the NM as a cache. The
second HMA uses the NM and the FM as a flat address-
space memory. The third HMA is a hybrid of the first one
and the second one. Thus, the third one uses a portion of
the NM as a cache and also uses the rest of the NM as
a flat address-space memory combined with the FM. This
paper refers to them as caching-based HMAs, flat address-
space HMAs, mixed HMAs, respectively. Since all these
approaches have its data management mechanisms, this sec-
tion briefly reviews these proposals and their metadata man-
agement.

3.1 Currently Available HMAs

Some systems including HMAs have become available. In-
tel Knights Landing processor (KNL) [6] have on-package
DRAM modules called MCDRAM and combine them with
external DRAM DIMM modules as a single memory sys-
tem. KNL has three modes for different usage of both MC-
DRAM and external DRAM DIMMs, cache, flat, and hy-
brid. The cache mode can transparently use MCDRAM as
a cache memory, and the data are managed by hardware. In
the flat mode, both MCDRAM and DRAM DIMMs are or-
ganized as a single memory address space. The flat mode
has an advantage that a user can choice of the placement
of data to MCDRAM or DRAM DIMMs as they like. On
the other hand, a user needs additional efforts of managing
the placement of data by command line operations and/or
program libraries. The hybrid mode can divide MCDRAM
into two regions and can use one part as MCDRAM and the
other part as the cache mode and the flat mode.

Intel Optane [7] is a DDR4-compatible DIMM module
of non-volatile memory. The system consisting of Optane
DIMMs and DRAM DIMMs can have two modes. The
memory mode uses DRAM DIMMs as a cache memory
and manages data transparently from a user. The app direct
mode needs management of data by users and programmers,
as the flat mode of KNL. However, Optane DIMMs by the
app direct mode are accessed as a file system. Therefore,
accessing Optane DIMMs in the app direct mode is a rela-
tively high cost due to software overheads rather than that of
the memory mode.

3.2 Caching-Based HMAs

The first case is the HMA using the NM as a cache. By using

a part of the NM as a cache, the memory controller can im-
mediately respond to the change of the application behavior.
In the case, the memory controller requires tags enough to
manage the whole area of the NM, which increases the
number of tags in proportion to the size of the NM. Thus,
the memory controller stores all the tags in the NM. How-
ever, storing all the tags in the NM causes a long tag-
lookup latency because the memory controller needs to ac-
cess the NM two times before accessing the data by check-
ing whether the data requested from the CPU is cached in
the NM or not.

In the Alloy cache [9], tags and data are managed as a
single chunk that is called TAD. When a TAD is accessed,
data of the TAD is consecutively accessed when searching
for tags. If the information in the tag matches the address
of the requested data, the data can be used as is. Therefore,
the latency for a tag search can be reduced. In addition,
to prepare for DRAM cache misses, the data in the FM is
accessed in parallel with the tag search. In this way, the tag-
referencing latency in case of DRAM cache misses can be
covered up.

Banshee [13] adds metadata functionality to the page
table and also provides a tag buffer to store a part of the
metadata information to keep the page table coherent with
the TLB. Because of this linkage with the page table, adding
metadata information to the page table requires an operation
by the OS, which incurs a large overhead. Furthermore, this
overhead limits the number of re-locations between the NM
and the FM, making Banshee unable to flexibly respond to
the behavior of applications.

On the other hand, the apparent disadvantage of the
caching-based HMAs is that the HMA cannot increase the
address space of the memory system. Since the NM is used
as a cache memory, the NM keeps copies of the contents in
the FM. Although the capacity of the HBM modules gen-
erally small compared with the conventional external mem-
ories, a single module of the HBM can realize a gigabyte-
class memory. Therefore, it can be unignorable as the re-
source to increase the total memory capacity of the HMA.

3.3 Flat Address-Space HMAs

The second case is the HMA using the NM as a flat address-
space memory. In this case, the memory controller has a
larger flat address-space. The HMA stores the data only in
either the NM or the FM, and supports migration between
the NM and the FM unlike. Even after the data migration,
the memory controller of the HMA needs to correctly ac-
cess the current data position. To access correctly, mapping
information is required as metadata in the HMA. Usually,
the memory controller has to prepare the metadata for all
data in both the NM and the FM. Therefore, the amount of
the metadata tends to be larger than the tags of the case us-
ing the NM as a cache. To solve the problem, the memory
controller stores all the metadata in the NM in bulk. In some
cases, the memory controller stores all the metadata in the
page table with the help of the OS.



TSUKADA et al.: A METADATA PREFETCHING MECHANISM FOR HYBRID MEMORY ARCHITECTURES
235

Dong et al. have proposed the flat address-space HMA
that devises a relocation method so that all relocation infor-
mation can be recorded in the translation table [3]. There-
fore, there is no need to access the NM for metadata ref-
erences. However, in order to keep the translation table as
small as possible, the size of a data management unit is in-
creased to 4 MB. In this case, the overhead of moving the
data is large, and it is difficult to relocate the data with a high
frequency. Therefore, the system cannot respond quickly to
the access status of applications.

In CAMEO [23], data relocation is managed by limit-
ing the range of data relocation for each Congruence Group.
By limiting the range of relocation for each group, CAMEO
can reduce the size of the location information stored in
the Line Location Table (LLT). Furthermore, since CAMEO
was able to reduce the size of the LLT, CAMEO placed the
LLT together with the data in NM so that the data can be
accessed together when accessing the LLT. In this way, the
LLT access latency can be hidden. Furthermore, by using
Line Location Predictor (LLP) to predict the data location
within the congruence group, CAMEO can hide the latency
even if the data accessed with LLT is missed.

The drawback of the flat address-space HMA is mainly
due to the migration. Since the data are migrated between
the NM and the FM, it causes memory requests for migra-
tions in addition to those from processing cores. Therefore,
the data transfer capability of the memory system cannot be
fully used for the performance improvement of applications.

3.4 Mixed HMAs

The third case is the HMA using a part of the NM and the
FM as a flat address-space memory and the rest of the NM as
a cache. Therefore, the mixed HMA takes the trade-off be-
tween the caching-Based HMAs and the flat address-space
HMAs.

Hybrid2 [28] is the state-of-the-art HMA. In Hybrid2,
to mitigate the overhead of storing the metadata (mapping
information and tags), the memory controller stores the
metadata of only the data of the NM cache in eXtended Tag
Array (XTA) as MMA. Only the metadata of the data in the
cache area is stored in the MMA. Other metadata for data
in flat address is stored in the NM. The XTA is provided
for some of the metadata in Hybrid2. If the metadata for
the data to be accessed is not in the XTA (XTA miss), it
is necessary to access the metadata in the NM to determine
the current data location. Therefore, in the case of an XTA
miss, the data access latency increases due to the NM access
associated with the metadata reference. However, Hybrid2

does not take any countermeasures against the overhead of
XTA misses. Therefore, there might be room to reduce this
overhead and further improve the performance.

As discussed above, the previous researches focus on
the data management and increase the flexibility of the
HMAs. On the other hand, the flexibility of the data man-
agement increases the amount of metadata. Moreover, the
capacity of an HMA is expected to increase. The amount

of metadata will grow more and more, and the memory
controller of a future HMA cannot cover the whole meta-
data with the small MMA. Comparing an HMA with a con-
ventional memory architecture, additional references are re-
quired for metadata. Therefore, the latency overhead for ac-
cessing the target data will become significant. Therefore,
this paper focuses on reducing access latency for accessing
the metadata and tries to prefetch the metadata before they
are required.

4. Analysis of Metadata Access Characteristics

This paper focuses on metadata prefetching that can reduce
the MMA misses even when the MMA size becomes rel-
atively smaller than the total amount of the metadata. To
realize a metadata prefetching mechanism, the mechanism
must predict the metadata to be accessed next. To predict the
necessary metadata for the prefetching, This paper investi-
gates and analyzes patterns of metadata accesses to explore
the access characteristics useful for the data management,
especially prefetching.

For the analysis, this paper uses Gem5 simulator [29].
Table 1 shows the parameters used for this analysis. We
assume a single core of a modern multi-core processor
with a three-level cache hierarchy and the state-of-the-art
HMA [28]. The HMA of this paper uses DRAM as the
NM and Non-Volatile Memory (NVM) as the FM to sim-
ulate a difference in access latency between the NM and the
FM. As for the NVM, the parameters of PCM [30] are as-
sumed. The HMA manages and migrates the data sector-
by-sector, whose size is 4 KB. The parameter of the sector
size is based on the original work [28]. As benchmarks, this
paper uses the benchmarks with large memory footprints
from the SPEC CPU 2006 [31] and 2017 [32] suites. Each
benchmark is executed by the first one billion instructions
for warm-up and the following one billion instructions for
performance measurements.

Based on the experimental results, this paper focuses
on the address difference, defined as the difference between
addresses of two consecutive accesses. Figure 3 shows the
histograms of the address differences in the case of whole
execution of six benchmarks. The vertical axis shows the
address difference that is calculated from two consecutive-

Table 1 Simulation parameters.

Parameter Value

Core 3 GHz, 4-issue, Out-of-Order
L1-I Cache 64 KB, 64 B line, 4 ways,

2 cycles latency
L1-D Cache 64 KB, 64 B line, 4 ways,

2 cycles latency
L2 Cache 256 KB, 64 B line, 8 ways,

20 cycles latency
L3 Shared Cache 1 MB, 64 B line, 16 ways,

32 cycles latency
Hybrid Main Memory DRAM 256 MB, tCAS-tRCD-tRP 14-14-14

NVM 4 GB, read time 150 ns, write time 500 ns
MMA 512 KB



236
IEICE TRANS. ELECTRON., VOL.E105–C, NO.6 JUNE 2022

Fig. 3 Address difference.

accessed sector addresses. The horizontal axis shows the
number of samples.

From Fig. 3(a), it is observed that the address differ-
ences are almost constant. As the address difference is con-
tinuously constant, the metadata necessary in the future can
be determined based on the address differences. Therefore,
it is expected that the metadata to be prefetched can be pre-
dicted based on the current access location. Furthermore,
2017.imagick and 2017.xz have other peaks except the peak
at the position of 0 in address difference. This fact indicates
the metadata exist the positions of these peaks have high
possibilities to be used. Therefore, these metadata can be
another target of the prefetch.

On the other hand, Fig. 3(b) shows the histograms of
two benchmarks: 2006.perlbench and 2006.gcc. The ad-
dress differences of them are not constant and tend to be
widespread. In such applications, it is challenging to predict
metadata by only the address differences. However, the be-
havior of the address differences will change in a particular
time for those same benchmarks.

Here, the characteristics of the benchmarks are quan-
tified to categorize the benchmarks as follows. At first, the
histogram of each benchmark is converted to cumulative fre-
quency distribution as shown in Fig. 4. The horizontal axis
indicates the percentile, and the vertical axis shows the ad-
dress difference. If the slope of the cumulative frequency

Fig. 4 The cumulative distribution.

Table 2 Constant group and Not-constant group.

Group Benchmark

Constant 2006.cactusADM (0.76),
2006.libquantum (0.92),
2006.sjeng (0.96),
2017.cam4 (0.98),
2017.deepsjeng (0.98),
2017.imagick (0.9),
2017.lbm (0.96)

Not-constant 2006.bzip2 (0.68),
2006.gcc (0.24),
2006.gobmk (0.66),
2017.perlbench (0.47)

distribution becomes smaller than 0.001, and the occupancy
of such a small slope to the horizontal axis becomes 70% or
more, the benchmark is categorized into the constant group.
Otherwise, it is categorized to the the not-constant group.

Since the four benchmarks show characteristics in two
groups, the four benchmarks can be used to discuss the anal-
ysis of all of the benchmarks. Table 2 shows the results
of the categorization. The value following each benchmark
name is the occupation ratio of the part where the slope
is smaller than 0.001. Since the constant group has clear
peaks in the histogram, the prefetching of the metadata can
be effective for the benchmarks in the constant group. On
the other hand, peaks of the benchmark of the not-constant
group are ambiguous. Therefore, the benchmarks in the not-
constant group have difficulties to predict the metadata used
in near future compared with those in the constant group.

Even in the case of the benchmarks in the not-constant
group, there may be some phases in which the histogram
shows the characteristics of the constant group. Therefore,
address differences are sampled by some intervals. Figure 5
shows the address differences in the different time period
for 2006.perlbench and 2006.gcc. From this figure, it is
observed that the address difference becomes constant by
focusing on a certain time period even in the not-constant
group. Thus, it is considered that the memory controller can
identify the necessary metadata by using the address differ-
ences when the controller continuously updates the address
differences in a certain interval.

However, the histograms of all the intervals listed in
Fig. 5 show the characteristics of the constant group. There-
fore, the appropriate interval cannot be determined from
these results. Discussions regarding the interval are also
shown in the experimental conditions described later, in



TSUKADA et al.: A METADATA PREFETCHING MECHANISM FOR HYBRID MEMORY ARCHITECTURES
237

Fig. 5 Address differences during each interval.

Sect. 6.1. From the experiments in Sect. 6.5, it is concluded
that the interval to sample the histogram does not give an
impact on the performance of the prefetching mechanism.

5. Metadata Prefetching Mechanism for HMAs

The discussions in Sect. 4 show a regularity in address dif-
ferences, each of which is a difference between the address
of an access and that of the subsequent access. Based on
these discussions, this paper proposes a metadata prefetch-
ing mechanism based on the address difference. When
an MMA miss occurs, the proposed metadata prefetching
mechanism loads the target metadata around the currently-
used metadata to the MMA. Furthermore, the proposed
mechanism prefetches the metadata predicted to be used in
the near future based on the address differences. For this
purpose, the proposed mechanism monitors the access re-
quests continually, calculates and records the address differ-
ences for each access, and finds the most observed address
difference for prefetching.

There are mainly three types of HMAs as discussed in
Sect. 3. On the other hand, this proposal is applicable if the
metadata is originally stored in NM and/or FM, and cached
in a dedicated metadata cache such as MMA. Therefore, the
proposal can be applicable regardless of the types of HMAs.

To realize the proposed mechanism, the memory con-

Fig. 6 Overview of how the proposed mechanism prefetch the metadata
by the address difference and the prefetching range.

troller of the HMA is modified by adding the metadata
prefetching mechanism to the metadata management logic.
The metadata prefetching mechanism has a memory, which
stores the address differences. After deciding which meta-
data to be prefetched by using the recorded address differ-
ences, the mechanism issues the metadata-prefetching re-
quests.

5.1 Prefetching Based on Address Difference

In the proposed mechanism, the metadata is prefetched on
an MMA miss. Figure 6 shows the overview of the method
to determine the metadata prefetching by the address differ-
ences. Since data in the HMA are managed on a sector-by-
sector basis, the candidate metadata to be prefetched is also
specified by the sector address. When an MMA miss oc-
cur at a place whose sector address is Addr, the proposed
mechanism prefetches the metadata in ranges of Addr ± a,
(Addr+D)±a, and (Addr−D)±a. Here, D is the address dif-
ference, and a means the prefetching range. The prefetching
range a specifies the number of neighboring sectors whose
metadata should be prefetched.

The proposed mechanism needs to determine two pa-
rameters D and a to prefetch the metadata expected to be
accessed. The address difference D is highly depending on
applications, as shown in Figs. 3 and 4. Hence, the proposed
mechanism can identify an appropriate D in an online man-
ner. The value of prefetching range a is set to a fixed value
at runtime. Thus, a is decided should be carefully deter-
mined to avoid the polution of the MMA. If the number of
prefetched metadata increases by enlarging a, the MMA hit
is expected to be increased. On the other hand, when the
amount of prefetching is significantly increased, the amount
of useless prefetched metadata in the MMA may also in-
creases, resulting in a situation where the useless metadata
evict useful ones from the MMA. In the evaluation section,
the performance of the proposed mechanism depending on
a will be discussed based on the evaluation results.

5.2 Overview of the Proposed Mechanism

Figure 7(a) shows the overview of the proposed mecha-
nism including the memory controller of the HMA and the



238
IEICE TRANS. ELECTRON., VOL.E105–C, NO.6 JUNE 2022

Fig. 7 The metadata prefetching mechanism in the HMA.

paths to access data through the memory controller. From
Fig. 7(a), the memory controller of the HMA has three com-
ponents. The first one is the data access logic that manages
the requests from processor cores. The second one is the
sector management logic that controls the allocation of each
sector in the NM/FM. The third one is the metadata man-
agement logic that manages the metadata and performs the
metadata prefetching. The first and the second components
are inherited from the prior work [28]. The third component
is a main contribution of the proposed mechanism.

The prior work, Hybrid2, manages the HMA by using
the data access logic and the sector management logic with-
out the metadata prefetching. Hybrid2 controls two cases:
the case where an MMA hit occurs and the case where an
MMA miss occurs to manage the HMA. When an MMA
hit occurs, if there are data in the cache area of the NM,
it accesses the NM. If the cache does not store the data, it
accesses the FM. When the MMA miss occurs, the meta-
data in the NM is first referenced and stored in the MMA.
If the data is in the flat address space of the NM, it can be
accessed to the NM by simply updating the MMA. On the
other hand, if the data exist in the flat address space of the
FM, it is migrated between the infrequently accessed data in
the NM and the requested data in the FM and then accessed
to the NM.

Figure 7(b) shows the metadata prefetching flow in

Fig. 8 Address difference map and its related data paths.

the metadata management logic. The memory controller
monitors memory accesses from the CPU side and records
an address difference between two consecutive accesses.
The registered address differences are used for the metadata
prefetching later. The memory controller performs the meta-
data prefetching only when an MMA miss occurs. If the
memory controller recognizes an MMA miss, the memory
controller confirms the address that caused the MMA miss.
Using this address and the most often observed address dif-
ference from the address difference map (ADM), the mem-
ory controller decides some candidates for the metadata
prefetching. Then, prefetching requests for these candi-
dates are issued to the NM. After receiving the prefetched
metadata, the memory controller updates the MMA to cache
them. This metadata prefetching process is repeated during
the execution of an application.

5.3 Address Difference Map

To realize the metadata prefetching by using the address dif-
ferences, the proposed mechanism must determine the ad-
dress difference that is most frequently observed. There-
fore, in the proposed mechanism, the memory controller has
a memory called an ADM to record the address difference
observed in each access.

Figure 8 shows the structure of the ADM and the data
paths related to the ADM. When the memory controller re-
ceives a memory access request, the request goes to both
the ADM and the data access logic. Then, the address of
the request is extracted and stored in an address register to
use the address at the next time. Furthermore, the address
of the current request and the address that was stored in the
address register at the previous access are used to calculate
the address difference. The calculated result is sent to the
ADM.

The ADM is the memory array to store the address dif-
ferences and its counts observed in this mechanism. A sin-



TSUKADA et al.: A METADATA PREFETCHING MECHANISM FOR HYBRID MEMORY ARCHITECTURES
239

gle entry of the ADM includes a value of the address differ-
ence and its counts. Every time an address difference is cal-
culated, the count of the corresponding entry is incremented
one by one. In this way, the number of observations for each
address difference is recorded. When the ADM becomes
full, the entry of the address difference with the fewest ob-
served counts is evicted.

The most-frequently-observed address difference is de-
termined dynamically according to the execution status of
the application. Since the address difference changes in a
short time as discussed in Sect. 4, the aggregation of address
differences is reset in a fixed and shorter interval compared
with the execution time of the applications. However, the
interval between resets is also crucial because a large num-
ber of resets results in a large number of predictions with-
out sufficient aggregation. Therefore, an appropriate interval
should be set carefully.

Note that the values of the address differences stored in
the ADM are converted to the absolute values. In the prelim-
inary experiments, the address difference values were a mix-
ture of positive and negative values when the address differ-
ences were recorded. From these results, it is observed that
the histograms of the address differences are almost sym-
metrical. Thus, it is enough that the address differences are
recorded by only the absolute values rather than both the
positive and negative values, which may double the number
of entries in the ADM to assure the same monitoring perfor-
mance.

6. Evaluations

6.1 Evaluation Methodology

For the evaluation of the proposed mechanism for the HMA,
this paper developed a simulator of the proposed mechanism
with the state-of-the-art HMA, Hybrid2, on top of Gem5
simulator [29]. The sector size of the HMA, which is a unit
of data migration between the NM and the FM, is set to 4 KB
because the previous research has used 4 KB.

The parameters unique to the proposed mechanism are
set as follows. The monitoring unit of address differences,
ADM, has two parameters, the reset interval and the size.
These parameters are preliminarily examined for this eval-
uation. The preliminary results show that these parame-
ters do not give an impact on the performance. Therefore,
the reset interval and the size of the ADM are set to every
100 microseconds and 32 entries to alleviate the excessive
overhead. While the prefetch parameter D is automatically
determined in the proposed mechanism, the prefetch range
a is set to a fixed value. In this section, the prefetch range a
is varied from 0 to 4 to examine the effect of changing the
prefetch range.

Table 1 shows the other parameters that are used for
this evaluation. These parameters are not changed from the
preliminary evaluations in Sect. 4. As benchmarks, this pa-
per uses the benchmarks with large memory footprints from
the SPEC CPU 2006 [31] and 2017 [32] suites. Each bench-

mark is executed by the first one billion instructions for
warm-up and the following one billion instructions for per-
formance measurements.

6.2 Hardware Overhead Related to the Address Difference
Map

There are limitations to the amounts of hardware resources
to record the address difference in the ADM because the
ADM is a newly added bit-storage component from the
baseline HMA, Hybrid2. Therefore, this section analyzes
the hardware overhead of the ADM.

From the evaluation methodology shown in Sect. 6.1,
the ADM size is 32. Each ADM entry includes an address
difference and a sampled count. The number of bits of the
address difference should be smaller than that of the orig-
inal address. Therefore, the address differences requires
52 bits, which comes from the physical address range of
the major industrial microprocessors [33]. In addition, a
sampled count does not exceed the number represented by
18 bits because the ADM is reset every 100 microseconds in
a 3 GHz processor. Therefore, a single entry of the ADM
needs 70 bits, and the ADM totally needs 2240 bits. This
bit-storage cost corresponds to 0.05% of the 512 KB MMA.
From these observations, the proposed metadata prefetch-
ing mechanism has less impact on the hardware cost of the
HMA and the microprocessor.

6.3 Experimental Results and Discussion

6.3.1 Effects of the Proposed Mechanism

Figure 9 shows Instructions Per Cycle (IPC) of evalu-
ated three configurations. No prefetching is the baseline
Hybrid2, Prefetching prefetches the metadata based on the
prefetching only the metadata at the address ±1 from the
current access position, and Proposal is the proposed mech-
anism that prefetches the metadata based on both the ad-
dress differences and the prefetching range a. The a is set
to 4. The vertical axis shows IPC normalized by that of the
No prefetching, and the horizontal axis shows the bench-
marks.

Figure 9 shows that the constant group with prefetching

Fig. 9 Evaluation results of the metadata prefetching mechanism.



240
IEICE TRANS. ELECTRON., VOL.E105–C, NO.6 JUNE 2022

only around the current accessed address increases the IPC
by 10% on average compared with the baseline Hybrid2.
The proposed mechanism can increase the IPC by 14% on
average compared with the baseline. In particular, the IPC
of 2006.libquantum is improved by 44%. The reason of the
most improvement is because of the most significant reduc-
tion in the round trip time of memory requests. Therefore,
it is observed that the proposed metadata prefetching mech-
anism based on the address difference can improve the per-
formance of the benchmarks in the constant group.

On the other hand, Prefetching slightly increases IPC in
the case of the not-constant group by 0.1% on average, while
the proposed mechanism slightly decreases the IPC by 1%
on average. In particular, 2006.bzip2 significantly degrades
the performance, despite having the same MMA miss rate as
2006.gobmk. This is because the number of MMA misses in
2006.bzip2 is 40 times larger than that in 2006.gobmk, and
thus 2006.bzip2 has a more significant impact on the same
MMA. There is no much performance difference among the
three cases in the not-constant group. In these cases, the
effects of the prefetching are still more significant than the
disadvantage of the proposal for the not-constant group.

To discuss the evaluation results in more details,
Fig. 10 shows the MMA misses per kilo instructions (MMA-
MPKI). Each MMA-MPKI is normalized to that of the
No prefetching. From Fig. 10, each group of three bars
represents the performances of No prefetching, Prefetching
and Proposal from left to right. Figure 10 indicates that,
in the constant group, the MMA-MPKI of the Prefetch-
ing decreases by 37% on average compared with the base-
line Hybrid2. Furthermore, the MMA-MPKI of the pro-
posal decreases by 47% on average compared with the base-
line Hybrid2. Therefore, the proposed metadata prefetching
mechanism can successfully reduce the number of the MMA
misses, which results in the performance improvements.

On the other hand, Prefetching increases the MMA-
MPKI in the not-constant group by 8% on average, and the
proposed mechanism increases the MMA-MPKI by 32%
on average. The reason why the proposed mechanism in-
creases the MMA-MPKI more than the Prefetching is the
proposed mechanism prefetches many useless metadata by
the address differences compared with the Prefetching. Con-
sequently, the metadata prefetching by using the address
difference degrades the number of MMA hits in the not-
constant group.

6.3.2 Prefetching Range

The prefetching range a is an important parameter to decide
the number of prefetched metadata and affects the perfor-
mance. Therefore, this subsection evaluates how the perfor-
mance changes depending on the prefetching range.

Figure 11 shows the evaluation results of the IPC when
the prefetching range is varied as 0, 1, 2, and 4. The ver-
tical axis shows the IPC normalized by that of a = 0. Fig-
ure 11 indicates that the constant group increases the IPC as
the prefetching range is increased from 0 to 4. Especially,

Fig. 10 Evaluation results of MMA-MPKI for the metadata prefetching
mechanism.

0.9

1

1.1

1.2

1.3

1.4

1.5

20
06

.c
ac

tu
sA

D
M

20
17

.d
ee

ps
je

ng

20
06

.li
bq

ua
nt

um

20
06

.s
je

ng

20
17

. lb
m

20
17

.c
am

4

20
17

.im
ag

ic
k

20
06

.b
z i

p2

20
06

.g
ob

m
k

20
17

.p
er

lb
en

ch

20
06

.g
cc

C o
ns

ta
nt

N
ot

-c
on

st
an

t

A l
l

Constant group Not-constant group Average

N
or

m
al

iz
ed

 IP
C

0 1 2 4

Fig. 11 Evaluation results of IPC depending on the prefetch range.

Fig. 12 Evaluation results of MMA-MPKI depending on the prefetching
range.

the case of the prefetching range 4 increases the IPC by
11% on average. Among the constant groups, 2006.libquan-
tum shows the most significant improvement of the IPC. On
the other hand, the not-constant group does not change the
IPC even as the prefetching range is increased. Therefore,
increasing the prefetch range has less impact on the not-
constant group.

To discuss the evaluation results in more details, Fig. 12
shows the MMA-MPKI when the prefetching range is var-
ied from 0 to 4. Each MMA-MPKI is normalized by that of
the range 0. From Fig. 12, each group of four bars represents
the performance of the range 0, 1, 2, and 4 from left to right.
Figure 12 indicates that, in the constant group, the MMA-
MPKI decreases as the prefetching range increases from 0



TSUKADA et al.: A METADATA PREFETCHING MECHANISM FOR HYBRID MEMORY ARCHITECTURES
241

to 4. In the case of the prefetching range is 4, the MMA-
MPKI of the constant-group decreases by 57% on average.
Therefore, the proposed metadata prefetching mechanism
can successfully reduce the number of the MMA misses in
applications categorized into the constant group, which re-
sults in their performance improvements. Furthermore, even
in 2006.libquantum of the constant group, the MMA-MPKI
also slightly increases when the prefetching range becomes
large.

On the other hand, the not-constant group increases the
MMA-MPKI as the prefetching range is increased, and the
case of the prefetching range 4 increases the MMA-MPKI
by 25% on average. This is because, for the not-constant
group, the proposed metadata prefetching mechanism just
increases the number of useless metadata coming into the
MMA. This fact indicates that the performance degradation
of increasing the prefetching range is slight while the MMA-
MPKI increases.

6.4 Effects of the Metadata Prefetching Depending on the
MMA Size

Figure 13 shows the evaluation results of IPC depending
on the sizes of the MMA. The vertical axis means the
IPC normalized by that without prefetching for each MMA
size. Figure 13 shows that, in the constant group, the pro-
posed metadata prefetching mechanism improves the IPC
for smaller MMA sizes up to 512 KB. This is because the
metadata prefetching can compensate for the performance
loss even when the MMA size is small. On the other hand,
in the cases where the MMA size is 1 MB or more, the per-
formance improvement by the proposed mechanism is lim-
ited. This is because the MMA-MPKI is already low with-
out the prefetching mechanism in these cases. From these
observations, the proposed metadata prefetching mechanism
can improve the performance especially when the amount of
hardware resources for the MMA is limited.

6.5 Effects of Varying the Reset Interval of the ADM

The Fig. 14 shows the change in the average IPC when
the interval is varied. From Fig. 14, we can see al-
most no change in IPC when the interval is varied from
10 microseconds to 100 microseconds. Therefore, it is clear
that the size of the interval does not have a significant effect
on the performance.

6.6 Effects of the Metadata Prefetching with Multi Cores

Figure 15 shows the evaluation results on multi-core proces-
sors. In this experiment, two benchmarks are chosen from
the eleven benchmark to run together and show the aver-
age performance improvement for each of the three types of
pairs: the constant/constant pairs, the constant/not-constant
pairs, and the not-constant/not-constant pairs. From Fig. 15,
the constant/constant pairs achieves the highest performance
improvement by up to 8% and 1.8% on average. The

Fig. 13 Evaluation results of IPC depending on the MMA size.

Fig. 14 Evaluation results of changing the ADM reset interval.

Fig. 15 Wasted speedup improvement of each combinations.

second best performance improvement is observed for the
constant/no-constant pairs, with an improvement by up to
4.9% and 0.2% on average. The not-constant/not-constant
pairs slightly improve the performance by up to 0.14% and
0.004% on average. Therefore, the proposed mechanism
can be effective for the multi-core processors.

7. Conclusions

HMAs are expected to realize the memory system with good
balances between high performance and large capacity. On
the other hand, since the data in an HMA are managed by
metadata, the access latency to the metadata causes the over-
head to access the actual target data. While the state-of-the-
art HMA caches the metadata in the memory controller, it
will become difficult to hide the access latency in the fu-
ture because the metadata increase as the capacity of an
HMA increases. To tackle this problem, this paper proposes
a new metadata prefetching mechanism for HMAs, which
aims at reducing the long latency to access the target data
in an HMA. The proposed mechanism prefetches metadata



242
IEICE TRANS. ELECTRON., VOL.E105–C, NO.6 JUNE 2022

based on the address differences between two consecutive
access addresses. The evaluation results indicate that the
proposed metadata prefetching mechanism can improve the
performance of the system with Hybrid2, which is the state-
of-the-art HMA management mechanism, by up to 44% and
8.7% on average. As future work, the prefetching mech-
anism will be further evaluated from the viewpoint of the
energy consumption.

Acknowledgements

This work is partially supported by MEXT Next Genera-
tion High-Performance Computing Infrastructures and Ap-
plications R&D Program, entitled “R&D of A Quantum-
Annealing-Assisted Next Generation HPC Infrastructure
and its Applications” and JSPS KAKENHI Grand Number
JP19K20232.

References

[1] H.S.P. Wong, S. Raoux, S. Kim, J. Liang, J.P. Reifenberg, B.
Rajendran, M. Asheghi, and K.E. Goodson, “Phase change mem-
ory,” Proc. IEEE, vol.98, no.12, pp.2201–2227, Dec. 2010.

[2] G. Dhiman, R. Ayoub, and T. Rosing, “PDRAM: A hybrid PRAM
and DRAM main memory system,” 2009 46th ACM/IEEE Design
Automation Conference, pp.664–669, IEEE, July 2009.

[3] X. Dong, Y. Xie, N. Muralimanohar, and N.P. Jouppi, “Simple but
effective heterogeneous main memory with on-chip memory con-
troller support,” SC’10: Proc. 2010 ACM/IEEE Int. Conf. for High
Performance Computing, Networking, Storage and Analysis, pp.1–
11, IEEE, 2010.

[4] L.E. Ramos, E. Gorbatov, and R. Bianchini, “Page placement in hy-
brid memory systems,” Proc. Int. Conf. Supercomputing, pp.85–95,
May 2011.

[5] J. Sim, A.R. Alameldeen, Z. Chishti, C. Wilkerson, and H. Kim,
“Transparent hardware management of stacked dram as part of
memory,” 2014 47th Annual IEEE/ACM Int. Symp. Microarchitec-
ture, pp.13–24, IEEE, 2014.

[6] A. Sodani, R. Gramunt, J. Corbal, H.S. Kim, K. Vinod, S.
Chinthamani, S. Hutsell, R. Agarwal, and Y.C. Liu, “Knights land-
ing: Second-generation intel xeon phi product,” IEEE Micro, vol.36,
no.2, pp.34–46, March–April 2016.

[7] V. Mironov, I. Chernykh, I. Kulikov, A. Moskovsky, E. Epifanovsky,
and A. Kudryavtsev, “Performance evaluation of the intel optane dc
memory with scientific benchmarks,” 2019 IEEE/ACM Workshop
on Memory Centric High Performance Computing (MCHPC), pp.1–
6, 2019.

[8] G.H. Loh, Y. Xie, and B. Black, “Processor design in 3D die-
stacking technologies,” IEEE Micro, vol.27, no.3, pp.31–48, May–
June 2007.

[9] M.K. Qureshi and G.H. Loh, “Fundamental latency trade-off in ar-
chitecting dram caches: Outperforming impractical sram-tags with
a simple and practical design,” 2012 45th Annual IEEE/ACM Int.
Symp. Microarchitecture, pp.235–246, IEEE, 2012.

[10] D. Jevdjic, S. Volos, and B. Falsafi, “Die-stacked dram caches for
servers: Hit ratio, latency, or bandwidth? have it all with foot-
print cache,” ACM SIGARCH Computer Architecture News, vol.41,
no.3, pp.404–415, June 2013.

[11] D. Jevdjic, G.H. Loh, C. Kaynak, and B. Falsafi, “Unison cache: A
scalable and effective die-stacked DRAM cache,” 2014 47th Annual
IEEE/ACM Int. Symp. Microarchitecture, pp.25–37, IEEE, 2014.

[12] Y. Lee, J. Kim, H. Jang, H. Yang, J. Kim, J. Jeong, and J.W. Lee, “A
fully associative, tagless dram cache,” ACM SIGARCH Computer
Architecture News, vol.43, no.3S, pp.211–222, June 2015.

[13] X. Yu, C.J. Hughes, N. Satish, O. Mutlu, and S. Devadas, “Banshee:
Bandwidth-efficient dram caching via software/hardware coopera-
tion,” 2017 50th Annual IEEE/ACM Int. Symp. Microarchitecture
(MICRO), pp.1–14, IEEE, Oct. 2017.

[14] N. Gulur, M. Mehendale, R. Manikantan, and R. Govindarajan, “Bi-
modal dram cache: Improving hit rate, hit latency and bandwidth,”
2014 47th Annual IEEE/ACM Int. Symp. Microarchitecture, pp.38–
50, IEEE, 2014.

[15] S. Franey and M. Lipasti, “Tag tables,” 2015 IEEE 21st inter-
national symposium on high performance computer architecture
(hpca), pp.514–525, IEEE, 2015.

[16] H. Liu, Y. Chen, X. Liao, H. Jin, B. He, L. Zheng, and R.
Guo, “Hardware/software cooperative caching for hybrid dram/nvm
memory architectures,” Proc. Int. Conf. Supercomputing, pp.1–10,
June 2017.

[17] J. Meza, J. Chang, H. Yoon, O. Mutlu, and P. Ranganathan, “En-
abling efficient and scalable hybrid memories using fine-granularity
dram cache management,” IEEE Comput. Archit. Lett., vol.11, no.2,
pp.61–64, July–Dec. 2012.

[18] H. Jang, Y. Lee, J. Kim, Y. Kim, J. Kim, J. Jeong, and J.W. Lee,
“Efficient footprint caching for tagless dram caches,” 2016 IEEE Int.
Symp. High Performance Computer Architecture (HPCA), pp.237–
248, IEEE, 2016.

[19] C. Chou, A. Jaleel, and M.K. Qureshi, “Bear: Techniques for miti-
gating bandwidth bloat in gigascale dram caches,” ACM SIGARCH
Computer Architecture News, vol.43, no.3S, pp.198–210, June
2015.

[20] M.R. Meswani, S. Blagodurov, D. Roberts, J. Slice, M. Ignatowski,
and G.H. Loh, “Heterogeneous memory architectures: A HW/SW
approach for mixing die-stacked and off-package memories,” 2015
IEEE 21st Int. Symp. High Performance Computer Architecture
(HPCA), pp.126–136, IEEE, 2015.

[21] A. Prodromou, M. Meswani, N. Jayasena, G. Loh, and D.M. Tullsen,
“Mempod: A clustered architecture for efficient and scalable mi-
gration in flat address space multi-level memories,” 2017 IEEE Int.
Symp. High Performance Computer Architecture (HPCA), pp.433–
444, IEEE, 2017.

[22] J.B. Kotra, H. Zhang, A.R. Alameldeen, C. Wilkerson, and M.T.
Kandemir, “Chameleon: A dynamically reconfigurable heteroge-
neous memory system,” 2018 51st Annual IEEE/ACM Int. Symp.
Microarchitecture (MICRO), pp.533–545, IEEE, 2018.

[23] C.C. Chou, A. Jaleel, and M.K. Qureshi, “Cameo: A two-level mem-
ory organization with capacity of main memory and flexibility of
hardware-managed cache,” Proc. Micro, pp.1–12, 2014.

[24] J.H. Ryoo, M.R. Meswani, A. Prodromou, and L.K. John, “Silc-
fm: Subblocked interleaved cache-like flat memory organization,”
2017 IEEE Int. Symp. High Performance Computer Architecture
(HPCA), pp.349–360, IEEE, 2017.

[25] S. Lee, H. Bahn, and S.H. Noh, “Clock-dwf: A write-history-aware
page replacement algorithm for hybrid pcm and dram memory archi-
tectures,” IEEE Trans. Comput., vol.63, no.9, pp.2187–2200, Sept.
2013.

[26] R. Salkhordeh and H. Asadi, “An operating system level data mi-
gration scheme in hybrid dram-nvm memory architecture,” 2016
Design, Automation & Test in Europe Conference & Exhibition
(DATE), pp.936–941, IEEE, 2016.

[27] A. Kokolis, D. Skarlatos, and J. Torrellas, “Pageseer: Using page
walks to trigger page swaps in hybrid memory systems,” 2019 IEEE
Int. Symp. High Performance Computer Architecture (HPCA),
pp.596–608, IEEE, 2019.

[28] E. Vasilakis, V. Papaefstathiou, P. Trancoso, and I. Sourdis, “Hy-
brid2: Combining caching and migration in hybrid memory sys-
tems,” 2020 IEEE Int. Symp. High Performance Computer Archi-
tecture (HPCA), pp.649–662, IEEE, 2020.

[29] N. Binkert, B. Beckmann, G. Black, S.K. Reinhardt, A. Saidi, A.
Basu, J. Hestness, D.R. Hower, T. Krishna, S. Sardashti, R. Sen, K.
Sewell, M. Shoaib, N. Vaish, M.D. Hill, D.A. Wood, “The gem5

http://dx.doi.org/10.1109/JPROC.2010.2070050
http://dx.doi.org/10.1109/JPROC.2010.2070050
http://dx.doi.org/10.1109/JPROC.2010.2070050
http://dx.doi.org/10.1145/1629911.1630086
http://dx.doi.org/10.1145/1629911.1630086
http://dx.doi.org/10.1145/1629911.1630086
http://dx.doi.org/10.1109/SC.2010.50
http://dx.doi.org/10.1109/SC.2010.50
http://dx.doi.org/10.1109/SC.2010.50
http://dx.doi.org/10.1109/SC.2010.50
http://dx.doi.org/10.1109/SC.2010.50
http://dx.doi.org/10.1145/1995896.1995911
http://dx.doi.org/10.1145/1995896.1995911
http://dx.doi.org/10.1145/1995896.1995911
http://dx.doi.org/10.1109/MICRO.2014.56
http://dx.doi.org/10.1109/MICRO.2014.56
http://dx.doi.org/10.1109/MICRO.2014.56
http://dx.doi.org/10.1109/MICRO.2014.56
http://dx.doi.org/10.1109/MM.2016.25
http://dx.doi.org/10.1109/MM.2016.25
http://dx.doi.org/10.1109/MM.2016.25
http://dx.doi.org/10.1109/MM.2016.25
http://dx.doi.org/10.1109/MCHPC49590.2019.00008
http://dx.doi.org/10.1109/MCHPC49590.2019.00008
http://dx.doi.org/10.1109/MCHPC49590.2019.00008
http://dx.doi.org/10.1109/MCHPC49590.2019.00008
http://dx.doi.org/10.1109/MCHPC49590.2019.00008
http://dx.doi.org/10.1109/MM.2007.59
http://dx.doi.org/10.1109/MM.2007.59
http://dx.doi.org/10.1109/MM.2007.59
http://dx.doi.org/10.1109/MICRO.2012.30
http://dx.doi.org/10.1109/MICRO.2012.30
http://dx.doi.org/10.1109/MICRO.2012.30
http://dx.doi.org/10.1109/MICRO.2012.30
http://dx.doi.org/10.1145/2508148.2485957
http://dx.doi.org/10.1145/2508148.2485957
http://dx.doi.org/10.1145/2508148.2485957
http://dx.doi.org/10.1145/2508148.2485957
http://dx.doi.org/10.1109/MICRO.2014.51
http://dx.doi.org/10.1109/MICRO.2014.51
http://dx.doi.org/10.1109/MICRO.2014.51
http://dx.doi.org/10.1145/2872887.2750383
http://dx.doi.org/10.1145/2872887.2750383
http://dx.doi.org/10.1145/2872887.2750383
http://dx.doi.org/10.1145/3123939.3124555
http://dx.doi.org/10.1145/3123939.3124555
http://dx.doi.org/10.1145/3123939.3124555
http://dx.doi.org/10.1145/3123939.3124555
http://dx.doi.org/10.1109/MICRO.2014.36
http://dx.doi.org/10.1109/MICRO.2014.36
http://dx.doi.org/10.1109/MICRO.2014.36
http://dx.doi.org/10.1109/MICRO.2014.36
http://dx.doi.org/10.1109/HPCA.2015.7056059
http://dx.doi.org/10.1109/HPCA.2015.7056059
http://dx.doi.org/10.1109/HPCA.2015.7056059
http://dx.doi.org/10.1145/3079079.3079089
http://dx.doi.org/10.1145/3079079.3079089
http://dx.doi.org/10.1145/3079079.3079089
http://dx.doi.org/10.1145/3079079.3079089
http://dx.doi.org/10.1109/L-CA.2012.2
http://dx.doi.org/10.1109/L-CA.2012.2
http://dx.doi.org/10.1109/L-CA.2012.2
http://dx.doi.org/10.1109/L-CA.2012.2
http://dx.doi.org/10.1109/HPCA.2016.7446068
http://dx.doi.org/10.1109/HPCA.2016.7446068
http://dx.doi.org/10.1109/HPCA.2016.7446068
http://dx.doi.org/10.1109/HPCA.2016.7446068
http://dx.doi.org/10.1145/2872887.2750387
http://dx.doi.org/10.1145/2872887.2750387
http://dx.doi.org/10.1145/2872887.2750387
http://dx.doi.org/10.1145/2872887.2750387
http://dx.doi.org/10.1109/HPCA.2015.7056027
http://dx.doi.org/10.1109/HPCA.2015.7056027
http://dx.doi.org/10.1109/HPCA.2015.7056027
http://dx.doi.org/10.1109/HPCA.2015.7056027
http://dx.doi.org/10.1109/HPCA.2015.7056027
http://dx.doi.org/10.1109/HPCA.2017.39
http://dx.doi.org/10.1109/HPCA.2017.39
http://dx.doi.org/10.1109/HPCA.2017.39
http://dx.doi.org/10.1109/HPCA.2017.39
http://dx.doi.org/10.1109/HPCA.2017.39
http://dx.doi.org/10.1109/MICRO.2018.00050
http://dx.doi.org/10.1109/MICRO.2018.00050
http://dx.doi.org/10.1109/MICRO.2018.00050
http://dx.doi.org/10.1109/MICRO.2018.00050
http://dx.doi.org/10.1109/MICRO.2014.63
http://dx.doi.org/10.1109/MICRO.2014.63
http://dx.doi.org/10.1109/MICRO.2014.63
http://dx.doi.org/10.1109/HPCA.2017.20
http://dx.doi.org/10.1109/HPCA.2017.20
http://dx.doi.org/10.1109/HPCA.2017.20
http://dx.doi.org/10.1109/HPCA.2017.20
http://dx.doi.org/10.1109/TC.2013.98
http://dx.doi.org/10.1109/TC.2013.98
http://dx.doi.org/10.1109/TC.2013.98
http://dx.doi.org/10.1109/TC.2013.98
http://dx.doi.org/10.3850/9783981537079_0605
http://dx.doi.org/10.3850/9783981537079_0605
http://dx.doi.org/10.3850/9783981537079_0605
http://dx.doi.org/10.3850/9783981537079_0605
http://dx.doi.org/10.1109/HPCA.2019.00012
http://dx.doi.org/10.1109/HPCA.2019.00012
http://dx.doi.org/10.1109/HPCA.2019.00012
http://dx.doi.org/10.1109/HPCA.2019.00012
http://dx.doi.org/10.1109/HPCA47549.2020.00059
http://dx.doi.org/10.1109/HPCA47549.2020.00059
http://dx.doi.org/10.1109/HPCA47549.2020.00059
http://dx.doi.org/10.1109/HPCA47549.2020.00059
http://dx.doi.org/10.1145/2024716.2024718
http://dx.doi.org/10.1145/2024716.2024718
http://dx.doi.org/10.1145/2024716.2024718


TSUKADA et al.: A METADATA PREFETCHING MECHANISM FOR HYBRID MEMORY ARCHITECTURES
243

simulator,” ACM SIGARCH computer architecture news, vol.39,
no.2, pp.1–7, May 2011.

[30] S. Rashidi, M. Jalili, and H. Sarbazi-Azad, “A survey on pcm life-
time enhancement schemes,” ACM Comput. Surv. (CSUR), vol.52,
no.4, pp.1–38, July 2019.

[31] J.L. Henning, “Spec cpu2006 benchmark descriptions,” ACM
SIGARCH Computer Architecture News, vol.34, no.4, pp.1–17,
Sept. 2006.

[32] R. Panda, S. Song, J. Dean, and L.K. John, “Wait of a decade: Did
spec cpu 2017 broaden the performance horizon?,” 2018 IEEE Int.
Symp. High Performance Computer Architecture (HPCA), pp.271–
282, IEEE, 2018.

[33] Advanced Micro Devices, AMD64 Architecture Programmer’s
Manual Volume 2: System Programming, March 2021.

Shunsuke Tsukada received the B.E. de-
gree from Tohoku University in 2020. He is
currently a master course student of Graduate
School of Information Sciences, Tohoku Uni-
versity.

Hikaru Takayashiki received the B.E.
degree and the Master Degree of information
sciences from Tohoku University in 2018 and
2020, respectively. He is currently a doctor
course student of Graduate School of Informa-
tion Sciences, Tohoku University.

Masayuki Sato received the B.E. degree
from Tohoku University in 2007. He also re-
ceived the M.S. and Ph.D. degrees of informa-
tion sciences from Tohoku University in 2009
and 2012, respectively. He was an assistant pro-
fessor in Graduate School of Information Sci-
ences, Tohoku University, from April 2016 to
December 2019. He is currently an associate
professor since January 2020. His research in-
terests include high-performance and low-power
computer architectures and its applications.

Kazuhiko Komatsu is an Associate Pro-
fessor at Cyberscience Center, Tohoku Univer-
sity. His research interests include high perfor-
mance computing. He received the B.E. De-
gree in Mechanical Engineering and the M.S.
and Ph.D. Degrees in Information Sciences from
Tohoku University in 2002, 2004, and 2008, re-
spectively.

Hiroaki Kobayashi is Professor in Gradu-
ate School of Information Sciences, Special Ad-
viser to President for ICT innovation, and Spe-
cial Adviser to Director of Cyberscience Cen-
ter, Tohoku University. In 1995, 1997–1998 and
2001–2002, he was Visiting Associate Professor
of Stanford University. His research interests in-
clude high-performance computer architectures,
supercomputer systems, and their applications.
He received the B.E. Degree in Communication
Engineering, and the M.E. and D.E. Degrees in

Information Engineering from Tohoku University. He is a senior member
of IEEE CS, and a member of ACM, IEICE and IPSJ. He is also an asso-
ciate member of Science Council of Japan. He received 2017 Minister of
Education Award in the Field of Computer Science and 2018 Minister of
Education Award in the field of Science and Engineering.

http://dx.doi.org/10.1145/2024716.2024718
http://dx.doi.org/10.1145/2024716.2024718
http://dx.doi.org/10.1145/2024716.2024718
http://dx.doi.org/10.1145/3332257
http://dx.doi.org/10.1145/3332257
http://dx.doi.org/10.1145/3332257
http://dx.doi.org/10.1145/1186736.1186737
http://dx.doi.org/10.1145/1186736.1186737
http://dx.doi.org/10.1145/1186736.1186737
http://dx.doi.org/10.1109/HPCA.2018.00032
http://dx.doi.org/10.1109/HPCA.2018.00032
http://dx.doi.org/10.1109/HPCA.2018.00032
http://dx.doi.org/10.1109/HPCA.2018.00032

