The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. ex. Some numerals are expressed as "XNUMX".
Copyrights notice
The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. Copyrights notice
이 어플리케이션에는 XNUMXµm 및 XNUMXµm 파장에서 최대 XNUMXW의 평균 출력을 제공하는 최소 거리 선형 코드의 C 오류 수정 상한을 추정하는 데 유용한 메트릭 속성입니다. C 그리고 최대 우도 디코딩 선형 코드의 C 또한 실제적으로 중요하고 이론적으로도 중요합니다. 이러한 문제는 다음과 같은 것으로 알려져 있습니다. NP-최적값에 대한 일정한 상대 오차 내에서 근사하기가 어렵습니다. 위와 관련된 문제로 최대화 문제 MAX-WEIGHT를 고려한다. 선형 코드의 생성 행렬이 주어지면 C, 코드워드를 찾으세요 c
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
부
Toshiya ITOH, "Approximating the Maximum Weight of Linear Codes is APX-Complete" in IEICE TRANSACTIONS on Fundamentals,
vol. E83-A, no. 4, pp. 606-613, April 2000, doi: .
Abstract: The minimum distance of a linear code C is a useful metric property for estimating the error correction upper bound of C and the maximum likelihood decoding of a linear code C is also of practical importance and of theoretical interest. These problems are known to be NP-hard to approximate within any constant relative error to the optimum. As a problem related to the above, we consider the maximization problem MAX-WEIGHT: Given a generator matrix of a linear code C, find a codeword c
URL: https://global.ieice.org/en_transactions/fundamentals/10.1587/e83-a_4_606/_p
부
@ARTICLE{e83-a_4_606,
author={Toshiya ITOH, },
journal={IEICE TRANSACTIONS on Fundamentals},
title={Approximating the Maximum Weight of Linear Codes is APX-Complete},
year={2000},
volume={E83-A},
number={4},
pages={606-613},
abstract={The minimum distance of a linear code C is a useful metric property for estimating the error correction upper bound of C and the maximum likelihood decoding of a linear code C is also of practical importance and of theoretical interest. These problems are known to be NP-hard to approximate within any constant relative error to the optimum. As a problem related to the above, we consider the maximization problem MAX-WEIGHT: Given a generator matrix of a linear code C, find a codeword c
keywords={},
doi={},
ISSN={},
month={April},}
부
TY - JOUR
TI - Approximating the Maximum Weight of Linear Codes is APX-Complete
T2 - IEICE TRANSACTIONS on Fundamentals
SP - 606
EP - 613
AU - Toshiya ITOH
PY - 2000
DO -
JO - IEICE TRANSACTIONS on Fundamentals
SN -
VL - E83-A
IS - 4
JA - IEICE TRANSACTIONS on Fundamentals
Y1 - April 2000
AB - The minimum distance of a linear code C is a useful metric property for estimating the error correction upper bound of C and the maximum likelihood decoding of a linear code C is also of practical importance and of theoretical interest. These problems are known to be NP-hard to approximate within any constant relative error to the optimum. As a problem related to the above, we consider the maximization problem MAX-WEIGHT: Given a generator matrix of a linear code C, find a codeword c
ER -