The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. ex. Some numerals are expressed as "XNUMX".
Copyrights notice
The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. Copyrights notice
메시지를 암호화하기 위해 무작위 입력을 요구하는 공개 키 암호화 시스템이 많이 있으며, 이들의 보안은 무작위 객체가 이상적으로 생성된다는 가정 하에 항상 논의됩니다. 암호 시스템은 컴퓨터에서 실행되므로 이러한 무작위 개체가 계산을 통해 생성되는 것은 매우 자연스러운 일입니다. 이론적 해결책 중 하나는 Yao의 의미에서 의사 난수 생성기를 사용하는 것입니다. 비공식적으로 말하면, 의사 난수 생성기는 출력이 균일 분포와 계산적으로 구별할 수 없는 다항식 시간 알고리즘입니다. Yao의 생성기를 사용하면 공개 키 암호화 시스템에서 메시지를 암호화하는 것보다 의사 난수 개체를 생성하는 데 훨씬 더 많은 시간이 걸리기 때문에 공개 키 암호화 시스템에 맞게 의사 난수 생성기의 조건을 완화하고 공개 키 암호화 시스템 내에서 의사 난수 생성기에 대한 최소 요구 사항을 제공합니다. . 예를 들어, 일부 잘 알려진 생성기(예: 선형 합동 생성기)를 사용하여 ElGamal 암호 시스템의 보안에 대해 논의합니다. 우리는 또한 최소 요구 사항을 충족하는 ElGamal 암호 시스템에 대한 무작위 입력을 위한 새로운 의사 난수 생성기를 제안합니다. 새로 제안된 생성기는 선형 합동 생성기를 기반으로 합니다. 우리는 제안된 생성기를 갖춘 ElGamal 암호화 시스템이 안전하다는 몇 가지 증거를 보여줍니다.
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
부
Takeshi KOSHIBA, "A Theory of Randomness for Public Key Cryptosystems: The ElGamal Cryptosystem Case" in IEICE TRANSACTIONS on Fundamentals,
vol. E83-A, no. 4, pp. 614-619, April 2000, doi: .
Abstract: There are many public key cryptosystems that require random inputs to encrypt messages and their security is always discussed assuming that random objects are ideally generated. Since cryptosystems run on computers, it is quite natural that these random objects are computationally generated. One theoretical solution is the use of pseudorandom generators in the Yao's sense. Informally saying, the pseudorandom generators are polynomial-time algorithms whose outputs are computationally indistinguishable from the uniform distribution. Since if we use the Yao's generators then it takes much more time to generate pseudorandom objects than to encrypt messages in public key cryptosystems, we relax the conditions of pseudorandom generators to fit public key cryptosystems and give a minimal requirement for pseudorandom generators within public key cryptosystems. As an example, we discuss the security of the ElGamal cryptosystem with some well-known generators (e. g. , the linear congruential generator). We also propose a new pseudorandom number generator, for random inputs to the ElGamal cryptosystem, that satisfies the minimal requirement. The newly proposed generator is based on the linear congruential generator. We show some evidence that the ElGamal cryptosystem with the proposed generator is secure.
URL: https://global.ieice.org/en_transactions/fundamentals/10.1587/e83-a_4_614/_p
부
@ARTICLE{e83-a_4_614,
author={Takeshi KOSHIBA, },
journal={IEICE TRANSACTIONS on Fundamentals},
title={A Theory of Randomness for Public Key Cryptosystems: The ElGamal Cryptosystem Case},
year={2000},
volume={E83-A},
number={4},
pages={614-619},
abstract={There are many public key cryptosystems that require random inputs to encrypt messages and their security is always discussed assuming that random objects are ideally generated. Since cryptosystems run on computers, it is quite natural that these random objects are computationally generated. One theoretical solution is the use of pseudorandom generators in the Yao's sense. Informally saying, the pseudorandom generators are polynomial-time algorithms whose outputs are computationally indistinguishable from the uniform distribution. Since if we use the Yao's generators then it takes much more time to generate pseudorandom objects than to encrypt messages in public key cryptosystems, we relax the conditions of pseudorandom generators to fit public key cryptosystems and give a minimal requirement for pseudorandom generators within public key cryptosystems. As an example, we discuss the security of the ElGamal cryptosystem with some well-known generators (e. g. , the linear congruential generator). We also propose a new pseudorandom number generator, for random inputs to the ElGamal cryptosystem, that satisfies the minimal requirement. The newly proposed generator is based on the linear congruential generator. We show some evidence that the ElGamal cryptosystem with the proposed generator is secure.},
keywords={},
doi={},
ISSN={},
month={April},}
부
TY - JOUR
TI - A Theory of Randomness for Public Key Cryptosystems: The ElGamal Cryptosystem Case
T2 - IEICE TRANSACTIONS on Fundamentals
SP - 614
EP - 619
AU - Takeshi KOSHIBA
PY - 2000
DO -
JO - IEICE TRANSACTIONS on Fundamentals
SN -
VL - E83-A
IS - 4
JA - IEICE TRANSACTIONS on Fundamentals
Y1 - April 2000
AB - There are many public key cryptosystems that require random inputs to encrypt messages and their security is always discussed assuming that random objects are ideally generated. Since cryptosystems run on computers, it is quite natural that these random objects are computationally generated. One theoretical solution is the use of pseudorandom generators in the Yao's sense. Informally saying, the pseudorandom generators are polynomial-time algorithms whose outputs are computationally indistinguishable from the uniform distribution. Since if we use the Yao's generators then it takes much more time to generate pseudorandom objects than to encrypt messages in public key cryptosystems, we relax the conditions of pseudorandom generators to fit public key cryptosystems and give a minimal requirement for pseudorandom generators within public key cryptosystems. As an example, we discuss the security of the ElGamal cryptosystem with some well-known generators (e. g. , the linear congruential generator). We also propose a new pseudorandom number generator, for random inputs to the ElGamal cryptosystem, that satisfies the minimal requirement. The newly proposed generator is based on the linear congruential generator. We show some evidence that the ElGamal cryptosystem with the proposed generator is secure.
ER -