The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. ex. Some numerals are expressed as "XNUMX".
Copyrights notice
The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. Copyrights notice
첫째, 완전한 삼자 다중 그래프 λ의 균형 잡힌 나비넥타이 분해가 존재하기 위한 필요 충분 조건을 보여줍니다. Kn1,n2,n3 (나)이다 n1=n2=n3
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
부
Kazuhiko USHIO, Hideaki FUJIMOTO, "Balanced Bowtie and Trefoil Decomposition of Complete Tripartite Multigraphs" in IEICE TRANSACTIONS on Fundamentals,
vol. E84-A, no. 3, pp. 839-844, March 2001, doi: .
Abstract: First, we show that the necessary and sufficient condition for the existence of a balanced bowtie decomposition of the complete tripartite multi-graph λ Kn1,n2,n3 is (i) n1=n2=n3
URL: https://global.ieice.org/en_transactions/fundamentals/10.1587/e84-a_3_839/_p
부
@ARTICLE{e84-a_3_839,
author={Kazuhiko USHIO, Hideaki FUJIMOTO, },
journal={IEICE TRANSACTIONS on Fundamentals},
title={Balanced Bowtie and Trefoil Decomposition of Complete Tripartite Multigraphs},
year={2001},
volume={E84-A},
number={3},
pages={839-844},
abstract={First, we show that the necessary and sufficient condition for the existence of a balanced bowtie decomposition of the complete tripartite multi-graph λ Kn1,n2,n3 is (i) n1=n2=n3
keywords={},
doi={},
ISSN={},
month={March},}
부
TY - JOUR
TI - Balanced Bowtie and Trefoil Decomposition of Complete Tripartite Multigraphs
T2 - IEICE TRANSACTIONS on Fundamentals
SP - 839
EP - 844
AU - Kazuhiko USHIO
AU - Hideaki FUJIMOTO
PY - 2001
DO -
JO - IEICE TRANSACTIONS on Fundamentals
SN -
VL - E84-A
IS - 3
JA - IEICE TRANSACTIONS on Fundamentals
Y1 - March 2001
AB - First, we show that the necessary and sufficient condition for the existence of a balanced bowtie decomposition of the complete tripartite multi-graph λ Kn1,n2,n3 is (i) n1=n2=n3
ER -