The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. ex. Some numerals are expressed as "XNUMX".
Copyrights notice
The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. Copyrights notice
이 논문에서는 PWAM(Piecewise Affine Markov) 맵에 의해 생성된 양자화된 궤적의 고차 기대치 분석 계산에 대한 텐서 기반 접근 방식을 고려합니다. 우리는 (n,t) 꼬리 교대, (n,t)-깨진 정체성과 (n,t,π)-혼합 순열. 이러한 패밀리는 지도 디자인에 의해 세부 프로필이 제어되는 점근적 지수 붕괴로 기대치를 생성합니다. (n,t)-꼬리 시프트 케이스 기대치는 (에서 부호가 교대로 나타납니다.n,t)-깨진 신원의 경우 부호가 일정하며 (n,t,π)-혼합 순열의 경우 덤프된 주기 추세를 따릅니다.
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
부
Gianluca SETTI, Riccardo ROVATTI, Gianluca MAZZINI, "Tensor-Based Theory for Quantized Piecewise-Affine Markov Systems: Analysis of Some Map Families" in IEICE TRANSACTIONS on Fundamentals,
vol. E84-A, no. 9, pp. 2090-2100, September 2001, doi: .
Abstract: In this paper we consider a tensor-based approach to the analytical computation of higher-order expectations of quantized trajectories generated by Piecewise Affine Markov (PWAM) maps. We formally derive closed-form expressions for expectations of trajectories generated by three families of maps, referred to as (n,t)-tailed shifts, (n,t)-broken identities and (n,t,π)-mixing permutations. These families produce expectations with asymptotic exponential decay whose detailed profile is controlled by map design. In the (n,t)-tailed shift case expectations are alternating in sign, in the (n,t)-broken identity case they are constant in sign, and the (n,t,π)-mixing permutation case they follow a dumped periodic trend.
URL: https://global.ieice.org/en_transactions/fundamentals/10.1587/e84-a_9_2090/_p
부
@ARTICLE{e84-a_9_2090,
author={Gianluca SETTI, Riccardo ROVATTI, Gianluca MAZZINI, },
journal={IEICE TRANSACTIONS on Fundamentals},
title={Tensor-Based Theory for Quantized Piecewise-Affine Markov Systems: Analysis of Some Map Families},
year={2001},
volume={E84-A},
number={9},
pages={2090-2100},
abstract={In this paper we consider a tensor-based approach to the analytical computation of higher-order expectations of quantized trajectories generated by Piecewise Affine Markov (PWAM) maps. We formally derive closed-form expressions for expectations of trajectories generated by three families of maps, referred to as (n,t)-tailed shifts, (n,t)-broken identities and (n,t,π)-mixing permutations. These families produce expectations with asymptotic exponential decay whose detailed profile is controlled by map design. In the (n,t)-tailed shift case expectations are alternating in sign, in the (n,t)-broken identity case they are constant in sign, and the (n,t,π)-mixing permutation case they follow a dumped periodic trend.},
keywords={},
doi={},
ISSN={},
month={September},}
부
TY - JOUR
TI - Tensor-Based Theory for Quantized Piecewise-Affine Markov Systems: Analysis of Some Map Families
T2 - IEICE TRANSACTIONS on Fundamentals
SP - 2090
EP - 2100
AU - Gianluca SETTI
AU - Riccardo ROVATTI
AU - Gianluca MAZZINI
PY - 2001
DO -
JO - IEICE TRANSACTIONS on Fundamentals
SN -
VL - E84-A
IS - 9
JA - IEICE TRANSACTIONS on Fundamentals
Y1 - September 2001
AB - In this paper we consider a tensor-based approach to the analytical computation of higher-order expectations of quantized trajectories generated by Piecewise Affine Markov (PWAM) maps. We formally derive closed-form expressions for expectations of trajectories generated by three families of maps, referred to as (n,t)-tailed shifts, (n,t)-broken identities and (n,t,π)-mixing permutations. These families produce expectations with asymptotic exponential decay whose detailed profile is controlled by map design. In the (n,t)-tailed shift case expectations are alternating in sign, in the (n,t)-broken identity case they are constant in sign, and the (n,t,π)-mixing permutation case they follow a dumped periodic trend.
ER -