The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. ex. Some numerals are expressed as "XNUMX".
Copyrights notice
The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. Copyrights notice
정수 코드는 고정된 양의 정수를 모듈로하는 정수에 대한 오류 정정 코드로 정의됩니다. 본 논문에서는 정수 코드의 구성이 소인수 계수의 경우로 축소될 수 있음을 보여줍니다. 작은 소인수 계수로 정수 코드를 효율적으로 검색할 수 있으며, 큰 합성수 계수로 대상 정수 코드를 구성할 수 있습니다. 더욱이, 우리는 또한 이 소인수분해 감소가 자기 직교 및 자기 쌍대 정수 코드의 구성에 유용하다는 것을 보여줍니다. 즉, 소수 계수의 이러한 속성은 합성수 계수에서 보존됩니다. 정수 코드 및 생성기 행렬의 수치 예는 이러한 사실과 프로세스를 보여줍니다.
Hajime MATSUI
Toyota Technological Institute
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
부
Hajime MATSUI, "A Modulus Factorization Algorithm for Self-Orthogonal and Self-Dual Integer Codes" in IEICE TRANSACTIONS on Fundamentals,
vol. E101-A, no. 11, pp. 1952-1956, November 2018, doi: 10.1587/transfun.E101.A.1952.
Abstract: Integer codes are defined by error-correcting codes over integers modulo a fixed positive integer. In this paper, we show that the construction of integer codes can be reduced into the cases of prime-power moduli. We can efficiently search integer codes with small prime-power moduli and can construct target integer codes with a large composite-number modulus. Moreover, we also show that this prime-factorization reduction is useful for the construction of self-orthogonal and self-dual integer codes, i.e., these properties in the prime-power moduli are preserved in the composite-number modulus. Numerical examples of integer codes and generator matrices demonstrate these facts and processes.
URL: https://global.ieice.org/en_transactions/fundamentals/10.1587/transfun.E101.A.1952/_p
부
@ARTICLE{e101-a_11_1952,
author={Hajime MATSUI, },
journal={IEICE TRANSACTIONS on Fundamentals},
title={A Modulus Factorization Algorithm for Self-Orthogonal and Self-Dual Integer Codes},
year={2018},
volume={E101-A},
number={11},
pages={1952-1956},
abstract={Integer codes are defined by error-correcting codes over integers modulo a fixed positive integer. In this paper, we show that the construction of integer codes can be reduced into the cases of prime-power moduli. We can efficiently search integer codes with small prime-power moduli and can construct target integer codes with a large composite-number modulus. Moreover, we also show that this prime-factorization reduction is useful for the construction of self-orthogonal and self-dual integer codes, i.e., these properties in the prime-power moduli are preserved in the composite-number modulus. Numerical examples of integer codes and generator matrices demonstrate these facts and processes.},
keywords={},
doi={10.1587/transfun.E101.A.1952},
ISSN={1745-1337},
month={November},}
부
TY - JOUR
TI - A Modulus Factorization Algorithm for Self-Orthogonal and Self-Dual Integer Codes
T2 - IEICE TRANSACTIONS on Fundamentals
SP - 1952
EP - 1956
AU - Hajime MATSUI
PY - 2018
DO - 10.1587/transfun.E101.A.1952
JO - IEICE TRANSACTIONS on Fundamentals
SN - 1745-1337
VL - E101-A
IS - 11
JA - IEICE TRANSACTIONS on Fundamentals
Y1 - November 2018
AB - Integer codes are defined by error-correcting codes over integers modulo a fixed positive integer. In this paper, we show that the construction of integer codes can be reduced into the cases of prime-power moduli. We can efficiently search integer codes with small prime-power moduli and can construct target integer codes with a large composite-number modulus. Moreover, we also show that this prime-factorization reduction is useful for the construction of self-orthogonal and self-dual integer codes, i.e., these properties in the prime-power moduli are preserved in the composite-number modulus. Numerical examples of integer codes and generator matrices demonstrate these facts and processes.
ER -