The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. ex. Some numerals are expressed as "XNUMX".
Copyrights notice
The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. Copyrights notice
본 연구에서는 특정 선형 플랜트와 불확실한 선형 플랜트를 모두 사용하여 P 및 PD 유형 퍼지 논리 제어 시스템의 절대 안정성을 분석합니다. 안정성 분석에는 기준 입력, 액추에이터 게인 및 간격 플랜트 매개변수가 포함됩니다. 특정 선형 플랜트의 경우 P 및 PD 유형의 안정성(즉, 안정적인 오류 평형)은 다양한 기준 입력 및 액츄에이터 게인 하에서 Popov 또는 선형화 방법을 사용하여 분석됩니다. 퍼지 제어 시스템의 정상 상태 오류도 매개변수 평면에서 해결됩니다. Lur'e 시스템을 기반으로 한 파라메트릭 절대 안정성에 대한 파라메트릭 강인 Popov 기준은 불확실한 플랜트가 있는 P 유형 퍼지 제어 시스템의 안정성 분석에도 적용됩니다. 우리의 접근 방식에서 PD 유형 퍼지 논리 컨트롤러는 단일 입력 퍼지 논리 컨트롤러이며 분석을 위해 P 유형으로 변환됩니다. 우리 연구에서는 퍼지 제어 시스템의 절대 안정성 분석이 이전 연구와 달리 매개변수적 강인 Popov 기준을 사용하여 0이 아닌 참조 입력과 불확실한 선형 플랜트에 대해 제공됩니다. 또한 퍼지 전류 제어 RC 회로는 PSPICE 모델로 설계되었습니다. 분석 결과를 검증하기 위해 수치 시뮬레이션과 PSPICE 시뮬레이션이 모두 제공됩니다. 또한 시뮬레이션 예에서는 퍼지 제어 시스템의 진동 메커니즘을 다양한 평형 관점으로 지정합니다. 마지막으로 분석 방법의 효율성을 보여주기 위해 비교도 제공됩니다.
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
부
Bing-Fei WU, Li-Shan MA, Jau-Woei PERNG, "The Absolute Stability Analysis in Fuzzy Control Systems with Parametric Uncertainties and Reference Inputs" in IEICE TRANSACTIONS on Fundamentals,
vol. E92-A, no. 8, pp. 2017-2035, August 2009, doi: 10.1587/transfun.E92.A.2017.
Abstract: This study analyzes the absolute stability in P and PD type fuzzy logic control systems with both certain and uncertain linear plants. Stability analysis includes the reference input, actuator gain and interval plant parameters. For certain linear plants, the stability (i.e. the stable equilibriums of error) in P and PD types is analyzed with the Popov or linearization methods under various reference inputs and actuator gains. The steady state errors of fuzzy control systems are also addressed in the parameter plane. The parametric robust Popov criterion for parametric absolute stability based on Lur'e systems is also applied to the stability analysis of P type fuzzy control systems with uncertain plants. The PD type fuzzy logic controller in our approach is a single-input fuzzy logic controller and is transformed into the P type for analysis. In our work, the absolute stability analysis of fuzzy control systems is given with respect to a non-zero reference input and an uncertain linear plant with the parametric robust Popov criterion unlike previous works. Moreover, a fuzzy current controlled RC circuit is designed with PSPICE models. Both numerical and PSPICE simulations are provided to verify the analytical results. Furthermore, the oscillation mechanism in fuzzy control systems is specified with various equilibrium points of view in the simulation example. Finally, the comparisons are also given to show the effectiveness of the analysis method.
URL: https://global.ieice.org/en_transactions/fundamentals/10.1587/transfun.E92.A.2017/_p
부
@ARTICLE{e92-a_8_2017,
author={Bing-Fei WU, Li-Shan MA, Jau-Woei PERNG, },
journal={IEICE TRANSACTIONS on Fundamentals},
title={The Absolute Stability Analysis in Fuzzy Control Systems with Parametric Uncertainties and Reference Inputs},
year={2009},
volume={E92-A},
number={8},
pages={2017-2035},
abstract={This study analyzes the absolute stability in P and PD type fuzzy logic control systems with both certain and uncertain linear plants. Stability analysis includes the reference input, actuator gain and interval plant parameters. For certain linear plants, the stability (i.e. the stable equilibriums of error) in P and PD types is analyzed with the Popov or linearization methods under various reference inputs and actuator gains. The steady state errors of fuzzy control systems are also addressed in the parameter plane. The parametric robust Popov criterion for parametric absolute stability based on Lur'e systems is also applied to the stability analysis of P type fuzzy control systems with uncertain plants. The PD type fuzzy logic controller in our approach is a single-input fuzzy logic controller and is transformed into the P type for analysis. In our work, the absolute stability analysis of fuzzy control systems is given with respect to a non-zero reference input and an uncertain linear plant with the parametric robust Popov criterion unlike previous works. Moreover, a fuzzy current controlled RC circuit is designed with PSPICE models. Both numerical and PSPICE simulations are provided to verify the analytical results. Furthermore, the oscillation mechanism in fuzzy control systems is specified with various equilibrium points of view in the simulation example. Finally, the comparisons are also given to show the effectiveness of the analysis method.},
keywords={},
doi={10.1587/transfun.E92.A.2017},
ISSN={1745-1337},
month={August},}
부
TY - JOUR
TI - The Absolute Stability Analysis in Fuzzy Control Systems with Parametric Uncertainties and Reference Inputs
T2 - IEICE TRANSACTIONS on Fundamentals
SP - 2017
EP - 2035
AU - Bing-Fei WU
AU - Li-Shan MA
AU - Jau-Woei PERNG
PY - 2009
DO - 10.1587/transfun.E92.A.2017
JO - IEICE TRANSACTIONS on Fundamentals
SN - 1745-1337
VL - E92-A
IS - 8
JA - IEICE TRANSACTIONS on Fundamentals
Y1 - August 2009
AB - This study analyzes the absolute stability in P and PD type fuzzy logic control systems with both certain and uncertain linear plants. Stability analysis includes the reference input, actuator gain and interval plant parameters. For certain linear plants, the stability (i.e. the stable equilibriums of error) in P and PD types is analyzed with the Popov or linearization methods under various reference inputs and actuator gains. The steady state errors of fuzzy control systems are also addressed in the parameter plane. The parametric robust Popov criterion for parametric absolute stability based on Lur'e systems is also applied to the stability analysis of P type fuzzy control systems with uncertain plants. The PD type fuzzy logic controller in our approach is a single-input fuzzy logic controller and is transformed into the P type for analysis. In our work, the absolute stability analysis of fuzzy control systems is given with respect to a non-zero reference input and an uncertain linear plant with the parametric robust Popov criterion unlike previous works. Moreover, a fuzzy current controlled RC circuit is designed with PSPICE models. Both numerical and PSPICE simulations are provided to verify the analytical results. Furthermore, the oscillation mechanism in fuzzy control systems is specified with various equilibrium points of view in the simulation example. Finally, the comparisons are also given to show the effectiveness of the analysis method.
ER -