The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. ex. Some numerals are expressed as "XNUMX".
Copyrights notice
The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. Copyrights notice
하자 V(φ)는 다음의 이동 불변 부분공간이 됩니다. L2(R) Riesz 또는 프레임 생성기 ψ(t). 우리는 ψ(t) 정기적인 샘플링 확장이 적합하도록: f(t) =
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
부
Kil Hyun KWON, Jaekyu LEE, "Irregular Sampling on Shift Invariant Spaces" in IEICE TRANSACTIONS on Fundamentals,
vol. E93-A, no. 6, pp. 1163-1170, June 2010, doi: 10.1587/transfun.E93.A.1163.
Abstract: Let V(φ) be a shift invariant subspace of L2(R) with a Riesz or frame generator φ(t). We take φ(t) suitably so that the regular sampling expansion : f(t) =
URL: https://global.ieice.org/en_transactions/fundamentals/10.1587/transfun.E93.A.1163/_p
부
@ARTICLE{e93-a_6_1163,
author={Kil Hyun KWON, Jaekyu LEE, },
journal={IEICE TRANSACTIONS on Fundamentals},
title={Irregular Sampling on Shift Invariant Spaces},
year={2010},
volume={E93-A},
number={6},
pages={1163-1170},
abstract={Let V(φ) be a shift invariant subspace of L2(R) with a Riesz or frame generator φ(t). We take φ(t) suitably so that the regular sampling expansion : f(t) =
keywords={},
doi={10.1587/transfun.E93.A.1163},
ISSN={1745-1337},
month={June},}
부
TY - JOUR
TI - Irregular Sampling on Shift Invariant Spaces
T2 - IEICE TRANSACTIONS on Fundamentals
SP - 1163
EP - 1170
AU - Kil Hyun KWON
AU - Jaekyu LEE
PY - 2010
DO - 10.1587/transfun.E93.A.1163
JO - IEICE TRANSACTIONS on Fundamentals
SN - 1745-1337
VL - E93-A
IS - 6
JA - IEICE TRANSACTIONS on Fundamentals
Y1 - June 2010
AB - Let V(φ) be a shift invariant subspace of L2(R) with a Riesz or frame generator φ(t). We take φ(t) suitably so that the regular sampling expansion : f(t) =
ER -