The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. ex. Some numerals are expressed as "XNUMX".
Copyrights notice
The original paper is in English. Non-English content has been machine-translated and may contain typographical errors or mistranslations. Copyrights notice
범용 상호 연결 네트워크는 서로 간에 임의의 상호 연결을 구현합니다. n 터미널. 본 논문에서는 접점 스위치를 이용하여 이러한 네트워크를 구현하기 위한 문제점을 고려한다. 언제 n=2, 단일 스위치로 구현이 가능하다. 서로 다른 연결 수 n 터미널은 벨 번호로 표시됩니다. B(n). 벨(Bell) 숫자는 분할할 총 메소드 수를 나타냅니다. n 별개의 요소. 을 위한 n=2, 3, 4, 5, 6, 해당 벨 번호는 각각 2, 5, 15, 52, 203입니다. 본 논문은 이를 실현하는 방법을 보여준다. n $ rac {3}{8}(n^2-1)$ 접점 스위치가 있는 터미널 범용 상호 연결 네트워크 n=2m+1≥5, $ rac {n}{8}(3n+2)$ 접점 스위치, n=2m≥6. 또한, 이를 실현하기 위한 접점 스위치 수의 하한이 있음을 보여줍니다. n-단말 범용 상호 연결 네트워크는 ⌈log 2B(n)⌉, 어디 B(n)는 벨 번호입니다.
Tsutomu SASAO
Meiji University
Takashi MATSUBARA
National Defence Academy
Katsufumi TSUJI
Fujitsu Limited
Yoshiaki KOGA
National Defence Academy
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
부
Tsutomu SASAO, Takashi MATSUBARA, Katsufumi TSUJI, Yoshiaki KOGA, "Realization of Multi-Terminal Universal Interconnection Networks Using Contact Switches" in IEICE TRANSACTIONS on Information,
vol. E104-D, no. 8, pp. 1068-1075, August 2021, doi: 10.1587/transinf.2020LOP0001.
Abstract: A universal interconnection network implements arbitrary interconnections among n terminals. This paper considers a problem to realize such a network using contact switches. When n=2, it can be implemented with a single switch. The number of different connections among n terminals is given by the Bell number B(n). The Bell number shows the total number of methods to partition n distinct elements. For n=2, 3, 4, 5 and 6, the corresponding Bell numbers are 2, 5, 15, 52, and 203, respectively. This paper shows a method to realize an n terminal universal interconnection network with $rac {3}{8}(n^2-1)$ contact switches when n=2m+1≥5, and $rac {n}{8}(3n+2)$ contact switches, when n=2m≥6. Also, it shows that a lower bound on the number of contact switches to realize an n-terminal universal interconnection network is ⌈log 2B(n)⌉, where B(n) is the Bell number.
URL: https://global.ieice.org/en_transactions/information/10.1587/transinf.2020LOP0001/_p
부
@ARTICLE{e104-d_8_1068,
author={Tsutomu SASAO, Takashi MATSUBARA, Katsufumi TSUJI, Yoshiaki KOGA, },
journal={IEICE TRANSACTIONS on Information},
title={Realization of Multi-Terminal Universal Interconnection Networks Using Contact Switches},
year={2021},
volume={E104-D},
number={8},
pages={1068-1075},
abstract={A universal interconnection network implements arbitrary interconnections among n terminals. This paper considers a problem to realize such a network using contact switches. When n=2, it can be implemented with a single switch. The number of different connections among n terminals is given by the Bell number B(n). The Bell number shows the total number of methods to partition n distinct elements. For n=2, 3, 4, 5 and 6, the corresponding Bell numbers are 2, 5, 15, 52, and 203, respectively. This paper shows a method to realize an n terminal universal interconnection network with $rac {3}{8}(n^2-1)$ contact switches when n=2m+1≥5, and $rac {n}{8}(3n+2)$ contact switches, when n=2m≥6. Also, it shows that a lower bound on the number of contact switches to realize an n-terminal universal interconnection network is ⌈log 2B(n)⌉, where B(n) is the Bell number.},
keywords={},
doi={10.1587/transinf.2020LOP0001},
ISSN={1745-1361},
month={August},}
부
TY - JOUR
TI - Realization of Multi-Terminal Universal Interconnection Networks Using Contact Switches
T2 - IEICE TRANSACTIONS on Information
SP - 1068
EP - 1075
AU - Tsutomu SASAO
AU - Takashi MATSUBARA
AU - Katsufumi TSUJI
AU - Yoshiaki KOGA
PY - 2021
DO - 10.1587/transinf.2020LOP0001
JO - IEICE TRANSACTIONS on Information
SN - 1745-1361
VL - E104-D
IS - 8
JA - IEICE TRANSACTIONS on Information
Y1 - August 2021
AB - A universal interconnection network implements arbitrary interconnections among n terminals. This paper considers a problem to realize such a network using contact switches. When n=2, it can be implemented with a single switch. The number of different connections among n terminals is given by the Bell number B(n). The Bell number shows the total number of methods to partition n distinct elements. For n=2, 3, 4, 5 and 6, the corresponding Bell numbers are 2, 5, 15, 52, and 203, respectively. This paper shows a method to realize an n terminal universal interconnection network with $rac {3}{8}(n^2-1)$ contact switches when n=2m+1≥5, and $rac {n}{8}(3n+2)$ contact switches, when n=2m≥6. Also, it shows that a lower bound on the number of contact switches to realize an n-terminal universal interconnection network is ⌈log 2B(n)⌉, where B(n) is the Bell number.
ER -